Matcha Hydration Hack
Matcha takes the benefits of brewed green tea and boosts them. It’s consumed whole, making it more nutrient dense than other teas, and its powdered form allows you to add it to Sport Hydration Mix & we add it to our Sport Energy Chews so that you get the benefits of Matcha when on the move.
Our suggested ratio for adding matcha to Sport Hydration mix is:
1/4 tsp pure matcha powder for every 1 scoop of Sport Hydration Mix (Lemon Lime is our preferred flavor to add it to)
Some Reasons to Use Matcha
1. Helps to boost performance.
Tea, like many plant-based foods, is a functional food. A functional food contains essential nutrients like carbohydrate, fat, protein, vitamins, and minerals. Matcha contains catechins (disease-fighting antioxidants) like epigallocatechin-3-gallate (EGCG), and studies have shown increases in performance using EGCG caused by an increase in fat use. In one human study, short-term consumption (945 mg over 48 hours) of EGCG has been shown to increase maximal oxygen consumption without changes in cardiac output, hinting a greater ability of muscle to extract oxygen (Richards, 2010).
2. Keeps you alert.
Tea has the ability to act as a stimulant due to naturally occurring caffeine. Caffeine is also a performance enhancer due to its ability to mobilize free fatty acids and improve alertness. Combined with other ingredients such as cane sugar and tapioca in our Energy Chews, you get a great tasting boost.
3. Reduces stress.
Tea can act as a mood stabilizer. The presence of the amino acid L-theanine works synergistically with caffeine to improve focus.
4. Boosts immunity.
The phytonutrient count in Matcha is unreal, which helps with immune function. Matcha's phytonutrients have an array of attributes including anti-oxidative, anti-inflammatory, anti-carcinogenic, anti-hypertensive, anti-microbial, neuroprotective, DNA protective (Ho, 2014), cholesterol lowering, and thermogenic or metabolism increasing properties. Furthermore, In one study, an acute dose of green tea catechins (22 mg per kg of body weight) immediately after exercise in Tae Kwon did show improvements in immune function (Lin, 2014). All of these ingredients and nutrients are essential for an athlete to perform at their best.
5. Improves recovery.
Matcha could help you recover after a hard workout. While much has been made about EGCG’s positive effects on performance, studies have also shown that EGCG may have implications for humans in recovery from exercise as well. One in vitro (outside of the body) study has shown that EGCG can help prevent muscle wasting (Mirza, 2014) which can have massive implications when recovering from intense exercise.
Want to learn more?
At Skratch Labs, all of our hydration products are driven by science but crafted and sold as real food, not as supplements. While it’s a subtle distinction for some, it’s a fundamental difference that defines everything we do. For example, we are meticulous about the formula in our Sport Hydration Mix, making sure that we have an electrolyte ratio that best matches what we lose in sweat and a blend of sugars that optimizes absorption in the small intestine to prevent gastrointestinal distress (i.e., gut rot). At the same time, none of our drink mixes contain flavoring agents or artificial ingredients. Instead, we use whole functional foods that have been dried and crushed like raspberries, oranges, lemons, mangos, and pineapples to flavor and enrich our line. This gives all of our drinks a simple and clean taste that hydrates us while also providing the nutritional benefits associated with the foods we use. We had previously taken this a step further by developing a flavor using Matcha – a type of green tea that is consumed whole rather than brewed, making it convenient and incredibly nutrient dense compared to other teas. While we did discontinue that flavor, adding some matcha to our sport hydration mix is a great option!
Like many plant-based foods, tea is a functional food. A functional food contains essential nutrients like carbohydrate, fat, protein, vitamins, and minerals as well as biologically active compounds that affect one’s physiology and that can contribute to disease prevention (Hayat, 2013; Deldicque, 2008). The natural compounds in foods that are not essential nutrients but that are important to our health are referred to as phytochemicals or phytonutrients. Phytochemicals in turn have a broad and complex classification system that has generated a litany of jargon in the marketing and science surrounding functional foods as well as an equivalent amount of confusion when it comes to understanding what we are actually consuming and whether it’s actually good for us.
For now, I’ll skip out on describing all of the classes of phytochemicals but mention the ones that are more common and relevant to tea. For example, one class of phytochemicals are alkaloids that include caffeine and caffeine-like compounds like theobromine and theophylline found in tea, coffee, and cocoa. Another class of phytochemicals are polyphenols which are further categorized into non-flavonoids and flavonoid compounds. Non-flavonoids include compounds like reseveratrol common to grapes and wine while flavonoids include compounds like anthocyanins, quercitin, and tanins, which can be further classified into catechins or flavan-3-ols. It’s these catechins that are specifically found in high quantities in tea and which can be further broken down into four major types of catechins in tea including epigallocatechin-3-gallate (EGCG), epigallocatechin (EGC), epicatechin-3-gallate (ECG), andepicatechin (EC) that are the compounds that impart many of the health benefits associated with tea (Kim, 2014).While all of these names are confusing all by themselves, the confusion is often confounded because when people describe a particular phytochemical, it’s common to use the different names within a particular class as synonyms for one another. For example, EGCG can be described as a catechin. A catechin can be described as a tannin. A tannin can be described as a flavonoid. A flavonoid can be described as a polyphenol. And finally, a polyphenol can be described as a phytochemical. To keep things easy and coming full circle, we’ll just describe good things in food that aren’t essential nutrients as phytonutrients and only talk about specific compound like the caffeine or EGCG in tea when appropriate.
With that in mind, the reason that phytonutrients in tea, specifically, catechins like EGCG have physiological significance and a number of health benefits is because they have an incredible array of unique attributes that include anti-oxidative (Jowko, 2011; Panza, 2008), anti-inflammatory (Hagiwara, 2014; Haramizu, 2013; Nicod, 2014), anti-carcinogenic (Sato, 1999; Siddiqui, 2014), anti-hypertensive (Khalesi, 2014; Mousavi, 2013; Onakypoya, 2014), anti-microbial (Hagiwara, 2014; Lin, 2014; Pang, 2014), neuro-protective (Noguchi-Shinohara, 2014), DNA protective (Ho, 2014), cholesterol lowering (Eichenberger, 2009; Kono 1996; Onakypoya, 2014; Yousaf, 2014), and thermogenic or metabolism increasing properties (Hodgson, 2013; Jeukendrup, 2011). And ultimately, all of these things are good things, especially when reviewing the wide array of research studies describing health benefits for specific diseases like cardiovascular disease (Ghanbari, 2014; Santesso, 2014), cancer (Butt, 2013; Green, 2014; Greenberg, 2013; Huang, 2014; Inoue, 1998; Wang, 2014), urinary tract infections (Katz, 2014), type II diabetes (Pham, 2014; Venables, 2008), arthritis (Byun, 2014; Yang, 2014; Riegsecker, 2013), stroke (Nabavi, 2014), obesity (Byun, 2014), dental diseases (Gaur, 2014), neurodegenerative diseases like Parkinson’s (Qi, 2014; Gao, 2013; Albarracin, 2012; Tanaka, 2011), and dermatological issues (Scheinfeld, 2013; Pazyar, 2012).Beyond these disease preventing properties, tea also can act as a stimulant due to naturally occurring caffeine as well as an amino acid called L-theanine, which has been show to be a mood stabilizer, working synergistically with caffeine to improve focus (Yoto, 2014; Camfield, 2014; Ross. 2014; Giesbrecht, 2010). And while much has been made about caffeine as a performance enhancer due to its ability to mobilize free fatty acids (Jeukendrup, 2011), improve alertness (Beaven, 2013), and enhance glycogen re-synthesis (Beelen, 2012; Taylor, 2011) it’s also clear that those effects only come at high doses of caffeine (3-6 mg per kg of body weight) and are better if you are unaccustomed to caffeine (Burke, 2008; Ganio, 2009; Deldicque, 2008). In addition, it’s also clear that at very high doses, caffeine can have negative affects ranging from sleep disturbance to anxiety to cardiovascular complications (Youngstedt, 1998, 2000; Rogers, 2013; Chrysant, 2014).
From an exercise standpoint, there’s less evidence that phytonutrients beyond caffeine like catechins in tea are beneficial to actual performance. That said, some studies in mice have shown improved endurance capacity in mice associated with EGCG supplementation resulting from an increase in fat use (Murase, 2005) as well as less of an age related decline in endurance performance (Murase, 2008). Interestingly, one in vitro (outside of the body) study has shown that EGCG can help prevent muscle wasting (Mirza, 2014) which may have implications for humans during exercise or in recovery from exercise, though those implications may be a bit of a stretch, especially since actual benefits in exercising humans are unclear. For example, a single 640 mg dose of EGCG in soccer players showed no reduction in oxidative stress or muscle damage (Jowko, 2012). An acute dose of green tea catechins (22 mg per kg of body weight), however, immediately after exercise in Tae Kwon did show improvements in immune function (Lin, 2014). Finally, in one human study, short term consumption (945 mg over 48 hours) of EGCG has been shown to increase maximal oxygen consumption without changes in cardiac output, hinting a greater ability of muscle to extract oxygen (Richards, 2010). Unfortunately, much more research is needed to bear out any real world performance benefits.